Vanishing Property of BRST Cohomology for Modified Highest Weight Modules

نویسندگان

چکیده

We construct certain modified highest weight modules which are called quasi in this paper. Using the modules, we introduce a new category of over an affine Lie superalgebra contains projective covers. also prove that both these covers and satisfy vanishing property BRST cohomology.

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Highest-weight Theory: Verma Modules

We will now turn to the problem of classifying and constructing all finitedimensional representations of a complex semi-simple Lie algebra (or, equivalently, of a compact Lie group). It turns out that such representations can be characterized by their “highest-weight”. The first method we’ll consider is purely Lie-algebraic, it begins by constructing a universal representation with a given high...

متن کامل

Characterization of Simple Highest Weight Modules

We prove that for simple complex finite dimensional Lie algebras, affine Kac-Moody Lie algebras, the Virasoro algebra and the Heisenberg-Virasoro algebra, simple highest weight modules are characterized by the property that all positive root elements act on these modules locally nilpotently. We also show that this is not the case for higher rank Virasoro and for Heisenberg algebras.

متن کامل

Laplace transform and unitary highest weight modules

The unitarizable modules in the analytic continuation of the holomorphic discrete series for tube type domains are realized as Hilbert spaces obtained through the Laplace transform.

متن کامل

Criteria for the Unitarizability of Some Highest Weight Modules

For a linear semisimple Lie group we obtain a necessary and sufficient condition for a highest weight module with non-singular infinitesimal character to be unitarizable.

متن کامل

Unitarity of Highest Weight Modules for Quantum Groups

We determine the highest weights that give rise to unitarity when q is real. We further show that when q is on the unit circle and q 6= ±1, then unitary highest weight representations must be finite dimensional and q must be a root of unity. We analyze the special case of the “ladder” representations for su(m,n). Finally we show how the quantized Ladder representations and their analogues for o...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Axioms

سال: 2023

ISSN: ['2075-1680']

DOI: https://doi.org/10.3390/axioms12060550